Using StrixDB with httpd (Apache
HTTP Server)

Apache httpd module for SPARQL and SPARQL/Update

Copyright © 2010 StrixDB. Freely available under the terms of the StrixDB license.

Overview

This document explains how to configure httpd (Apache HTTP Server) to use the
StrixDB RDF store. Configured Apache Server could :

e download and upload RDF graphs into the RDF store (in XML or turtle
format),
e respondto SPARQL and SPARQL/Update HTTP requests with the
SPARQL protocol
e respond to HTTP requests with dynamic Lua pages
o created from Lua scripts or
o created from files with embedded Lua code.

Status and License

Current version of StrixStore is 0.92

The current version is a beta release and could be used free of charges for any
purpose. The current version is ruled by the terms of the StrixDB license for beta
releases.

Lua APl is not final: it could be extended.

History

e 14-07-2010 Initial release v 0.9

e 02-09-2010 release 0.91: improved XML/RDF and RFC 2396 compliance

e 06-11-2010 release 0.92: could be used with APACHE http server.
StrixServer no more maintained.

Download and installation (for Windows)

Install an httpd (Apache HTTP Server) of version 2.2. The standard Windows
installation at http://httpd.apache.org/ could be used.

Download a StrixStore from http://www.strixDB.com/download.html (minimum
version 0.92). Installation is easy : just unzip files into a folder.

Copy the file mod_strixdb.so into the modules folder of Apache Server (with
standard installation, this folder is C:\Program Files\Apache Software
Foundation\Apache2.2\modules)

Configuration

You have to modify the Apache server configuration file : the default configuration
file with standard installation is C:/Program Files/Apache Software
Foundation/Apache2.2/conf/httpd.conf

Example of configuration :

LoadModule strixdb_module modules/mod_strixdb.so

<IfModule strixdb_module>
StrixRoot *'C:/Program Files/StrixDB/"

StrixFilename "D:/RDF/strix.db™"
StrixInitfile "D:/RDF/initDatabase. lua"
StrixDefaultURl "http://mydefault/graph/uri/*
StrixTruncate true

</1fModule>

<Location /strixdb>
SetHandler strix-db-handler
</Location>

AddHandler strix-luapage-handler _hlua
AddHandler strix-lua-handler .lua

Explanations :
LoadModule strixdb_module modules/mod_strixdb.so
REQUIRED: load the strixdb module
StrixRoot *"'C:/Program Files/StrixDB/"
REQUIRED: defines location of StrixDB installation (where are StrixStore.dll, etc...)

StrixFilename "D:/RDF/strix.db™"

Defines the path of the persistence file used to store graphs.
NOTES: this parameter is not required (by default it is "./strix.db"). If not specified,
file will be located in the directory of Apache httpd.

StrixInitfile "D:/RDF/initDatabase. lua"

Use this parameter to specify a file to run at creation (first opening) of the database
file (specified with parameter StrixFilename).

StrixDefaultURI “http://www.myfoaf.com/*"

Defines the default graph URI. If not specified, use URI returned by gethostname
C function.

StrixTruncate true
If this parameter is set to true, the database file is deleted at the server start.
AddHandler strix-luapage-handler _hlua

Associate an extension file (here .hlua) to the dynamic pages (containing
embedded lua code inside <?lua ?> tags).

AddHandler strix-lua-handler .lua

Associate an extension file (here .lua) to full interpreted Lua pages.

Advanced parameters (be carefull)

the number of pages cached in the
poolSize. Each page has 4K. Big default=100*1024
poolSize improves speed but consumes

StrixPoolsize
<integer>

memory.
StrixInitindex

. Size of the inital index (bitmap). default=8*1024*1024
<integer>
StrixQuantum Size of the new allocated quantum 1% .
<integer> (bitmap) when the allocated file is full, ~ d€fault=51271024*1024
StrixSafe <boolean> default=false
StrixNobuffer default=false
<boolean>

if true, wait disk write acknowledge event
StrixWritethrough for each write transaction (safer but
<boolean> slower with SPARQL/Update
transactions).

default=false

Dynamic Lua Pages

With StrixDB, Lua can be used as a nice alternative to php. We propose 2 uses of
Lua:

e as script generating the HTTP response with print function.
e as embedded Lua code inside a file (code is inside <?lua ?> tags).

First we have to configure Apache httpd.conf :

AddHandler strix-luapage-handler _hlua
AddHandler strix-lua-handler .lua

Explanations: the strix-luapage-handler handler associate file with a .hlua
extension with the embedded Lua code execution. The strix-lua-handler handler
associate .lua extension with the script generation. You could change the
extensions as needed. These association are available for all Apache accessible
files.

To test, just copy the folder tests/scripts from the StrixDB distribution into your
DocumentRoot folder specified in httpd.conf.

Embedded Lua code

Lua code must be included inside <?lua ?> . See test.hlua for an example. The
MIME type of the file is set by the Lua function apache.setContent

apache.setContent(" text/html*)

In the sample testCreatedRdf.hlua, the content type is set to
application/rdf+xml; charset=utf-8 so that the browser will interpret the response
as RDF/XML.

Script generated responses

In this case, all the file is generated by the Lua script. The sample test.lua shows
how to generate an HTML file. The sample testCreateRdf.lua shows how to
generate a RDF/turtle file.

As for embedded code, the Lua function apache.setContent set the MIME type of
the response.

Lua functions reference

With dynamic Lua pages, a Lua table named ‘apache’ make the bindings with
apache.

apache.host

returns the hostname of the request.

apache.filename

returns the filename requested (this file is the current file executed as a script for
strix-lua-handler handler and sended for the strix-luapage-handler handler)

apache.method

"GET" for a HTTP GET request, "POST" for a HTTP POST request.

apache.uri

the uri of the request.

apache.authentication

returns 2 values : the user and authentication type.

apache.root ()

returns the root folder of Apache (specified with DocumentRoot in the Apache
configuration file).

apache.datas ()

returns a table of the content datas (only avalaible with a POST request).

apache.headers ()

returns a table of the apache headers_i.

apache.args ()

returns a table of the arguments of the request. NOTE: with a POST request, use
apache.datas() to get the content.

apache.setStatus (<int>)

Set the status of the response (for example, apache.setStatus(404))

apache.setContent (<string>)

Set the MIME type of the response.

