
Quick installation (Windows)
Launching from a Lua console
Importing graphs from disk
Browsing graphs in database
Importing graphs from Lua
Importing graphs from the Web
Exporting RDF graphs
SPARQL queries
Creating rules
Using rules

Launching a SPARQL server
Configuration of Apache httpd
 Test SPARQL requests
Dynamic Lua Pages

Quick installation (Windows)
Unzip the distribution archive. You will get the Lua module StrixStore.dll, a ready to
use Lua5.1.dll and lua.exe console.

You will also get some RDF samples into the folder samples. The distribution zip
contains also webGet.dll, a Lua module to download RDF files from internet,
mod_strixdb.so the Apache module and sparql.html, a tutorial file explaining how
to use the SPARQL protocol (how to send SPARQL request to the Apache server).

Using the RDF store standalone
If you only want to manipulate RDF graphs you could simply use the Lua console
(or any custom Lua 5.1 compatible program). This standalone use don't need the
Apache HTTP server.

Launching from a Lua console
Start a Lua console, then load the StrixStore module and if you want to use
Internet files, the webGet module.

Then open the RDF store with the function rdf.open. 2 parameters are expressly
needed ! The database filename and the URI of default graph.

C:/RDF/StrixDB> lua.exe
Lua 5.1.4 Copyright (C) 1994-2008 Lua.org, PUC-Rio
> require 'StrixStore'
> require 'webGet'
> rdf.open{uri='http://mydefault/graph/uri/',file='D:/RDF/test.db'}
>

Importing RDF graphs
Importing from disk

We will import in the RDF Store a graph from a local disk file. We will use the
sample file foaf_sample0.rdf given in the samples folder. The function
rdf.graph.import takes a Lua table as argument. This table must have a uri key.
On the console prompt (it is a Lua interactive console), type :

rdf.graph.import{uri='foaf_sample0',file='samples/foaf_sample0.rdf'}

We now will import an other local file (relationship.rdf) but now with an absolute
URI.

rdf.graph.import {uri='http://www.perceive.net/schemas/relationship/',
file='samples/relationship.rdf'}

Importing from Lua

It is possible to create graphs programmatically with Lua : the Lua function
rdf.graph.create does this. The following code create a graph with
uri=http://example/foaf_sample1 with a Lua string containing triples in Turtle
format.

rdf.graph.create('foaf_sample1',
[[@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:a foaf:name "Johnny Lee Outlaw" .
_:a foaf:mbox <mailto:jlow@example.com> .
_:b foaf:name "Peter Goodguy" .
_:b foaf:mbox <mailto:peter@example.org> .
_:c foaf:mbox <mailto:carol@example.org> .
]])

Importing from the Web

Importing graph from the Web is elementary with SPARQL/Update.

rdf.update [[LOAD <http://www.strixDB.com/datas/animals.rdf>
INTO <http://www.strixDB.com/datas/animals.rdf>]]

Custom import

To create graphs from web resources, we will use the Lua module webGet. The
following code retrieve RDF datas from the net, then use the Lua function
rdf.graph.create to create the graph.

assert(require 'webGet')
Client = webGet.new{cache=true}
local uri = 'http://www.strixdb.com/samples/animals.rdf'
rdf.graph.create(uri,Client:GET(uri))

NOTE : this Lua module has also a SAX parser and a XML/RDF parser for
convenience. The next code parse the file and print start tags.

Client:expandNS(true)
Client:GETXML('http://www.w3.org/RDF/'
 function(tag,attrs,depth)print(depth,tag)end,
 null, null)

The next code print RDF triples :

Client:GETtriples('http://www.strixdb.com/samples/animals.rdf',print)

Browsing graphs in database
To get the list of all graphs stored in database, just use the function rdf.graph.list
returning a Lua array describing the graphs. The following code print the list of all
graphs

table.foreach(rdf.graph.list(),
 function(_,v)table.foreach(v,print)print()end)

Each graph has a timestamp : the unix time_t when the graph was updated for the
last time. If you proceed as above, you get 3 graphs :

 the default graph (empty) with uri = http://example/
 the foaf gaph with uri = http://example/foaf_sample0 Specifying a relative

uri at import (or for any function) will use the default graph as URI base.
 the 'relationship' graph.

Exporting RDF graphs
Exporting graphs is straightforward. For example, the next command exports
'animals.rdf' now in the database in N-triples format.

rdf.graph.export {uri='http://www.strixdb.com/datas/animals.rdf'
 ,file='animals.nt'}

Exporting the same graph in RDF/XML with namespace abbreviations (compact
attribute):

rdf.graph.export {uri='http://www.strixdb.com/datas/animals.rdf'
 ,file='MyAnimals.rdf',compact=2}

Without file specified, the export function use the Lua output (here stdout) and the
Turtle format :

rdf.graph.export{uri='http://www.strixdb.com/datas/animals.rdf'}

SPARQL queries
SPARQL queries don't need a lot of explanations. The rdf.sparql function print the
results in columns if the second argument is the string 'print' :

local query=[[PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
FROM <foaf_sample1>
WHERE {?x foaf:name ?name . ?x foaf:mbox ?mbox}]]

rdf.sparql(query,'print')

Without the 'print', rdf.sparql create a Lua iterator with the results. Next code show
how to iterate into the results of a query :

for name,mbox in rdf.sparql(query) do
 print(name..' -> '..mbox)
end

Explaining queries

To show the virtual machine byte code of the compiled SPARQL query, just use
the 'explain' option:

rdf.sparql(query,'explain')
0 CLEAR SPO
1 PRED = <->
2 CURSOR (P) call 4
3 RETURN

4 ?x = SUBJ
5 ?name = OBJ
6 CLEAR SPO
7 PRED = <->
8 SUBJ = ?x
9 CURSOR (SP) call 11
10 RETURN

11 ?mbox = OBJ
12 ROW_INSERT
13 CLEARSTACK
14 RETURN

Creating Rules
We will at first create some simple rules : the classical recursive parent/ancestor
rules. In 'pure datalog', these rules are :

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z),ancestor(Z,Y).

 IMPORTANT : Datalog is not Prolog. In Datalog, the order of rules declaration
has no effect. There is also no cut.

In StrixDB, these 2 rules are expressed in a SPAQRL like syntax. We will use the
relationship namespace for the parent predicate and introduce a new predicate
ancestor.

Create a new file named transitive.log with the above content :

@prefix rel: <http://www.perceive.net/schemas/relationship/>.
@prefix : <http://www.strixdb.com/2010/relationShip/>.
{ ?x rel:parentOf ?y }=> { ?x :ancestorOf ?y }.
{?x rel:parentOf ?z. ?z :ancestorOf ?y } => { ?x :ancestorOf ?y }.

Now, we could load this rules into the database.

rdf.rules.import{uri='http://example/rules1/',
 file='transitive.rlog' }

For people with a Prolog or Datalog background, it is also possible to write rules as
Horn Clauses (Datalog Rules):

rdf.rules.create{uri='http://example/rules2/',
datas=[[
@prefix rel: <http://www.perceive.net/schemas/relationship/>.
@prefix : <http://www.strixdb.com/2010/relationShip/>.
ancestorOf(?X,?Y) :- parentOf(?X,?Y).
ancestorOf(?X,?Y) :- parentOf(?X,?Z),ancestorOf(?Z,?Y).
]])

Using Rules
In pure Datalog, querying for ancestors is made as follow :

ancestor(X,Y) ?

In StrixDB, the rules are applied with SPARQL queries using the special key word
WITH RULES. The next code illustrate a SPARQL SELECT for ancestor.

rdf.sparql([[
PREFIX : <http://www.strixdb.com/2010/relationShip/>
SELECT ?X ?Y
FROM <foaf_sample2>
WITH RULES <http://example/rules1/>
WHERE {?X :ancestor ?Y}]],'print')

Graphs and namespaces make the query a little more complicated. But all the
power of SPARQL (OPTIONAL, UNION, FILTER and GRAPH) could be used. The
next (simple) statement shows a mixed use of SPAQL and Datalog :

rdf.sparql([[PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX : <http://www.strixdb.com/2010/relationShip/>
SELECT ?Xname ?Yname
FROM <foaf_sample2>
WITH RULES <http://example/rules1/>
WHERE {?X :ancestor ?Y.
 ?X foaf:name ?Xname.
 ?Y foaf:name ?Yname
}]],'print')

Launching a SPARQL server
If not already done, install an Apache HTTP Server (httpd version 2.2).

Download a windows installer from http://httpd.apache.org/download.cgi

For newbie with Apache httpd, you have to modify the Apache server configuration
file. The default configuration file with standard installation is:
 C:/Program Files/Apache Software Foundation/Apache2.2/conf/httpd.conf.
Verify (and change if needed) the following parameters Listen, ServerName and
DocumentRoot.

About Apache configuration for RDF, see more in W3C Configuring Apache
HTTP Server for RDFS/OWL Ontologies Cookbook

Configuration of Apache httpd
Copy the file mod_strixdb.so of StrixDB distribution into the modules folder of
Apache Server (with standard installation, this folder is C:\Program Files\Apache
Software Foundation\Apache2.2\modules)

Now you have to add some entries to httpd.conf.

LoadModule strixdb_module modules/mod_strixdb.so

StrixRoot "C:/Program Files/StrixDB/"
StrixFilename "D:/RDF/strix.db"
StrixDefaultURI "http://mydefault/graph/uri/"

<Location /strixdb>
 SetHandler strix-db-handler
</Location>

Explanations : LoadModule says to Apache that we want to use StrixDB,
StrixRoot refers to StrixDB installation folder, StrixFilename is the file used by
our RDF store, StrixDefaultURI is the default graph URI.

Testing SPARQL requests
Launch Apache httpd server. Within a DOS console, run the following command :

httpd -k stop
httpd -k start

Now, Apache httpd is running as a Windows service. Copy the file sparql.html
from the StrixDB distribution into your DocumentRoot folder specified in
httpd.conf.

With a Web browser get the page http://<ServerName>/sparql.html . You could
now :

 get the list of graphs stored
 download and upload RDF graphs into the RDF store (in XML or turtle

format)
 make SPARQL and SPARQL/Update HTTP requests (with the SPARQL

protocol)

Note: We recommend the use of Firefox with The Tabulator Extension to display
RDF nicely.

Dynamic Lua Pages
With StrixDB, Lua can be used as a nice alternative to php. We propose 2 uses of
Lua:

 HTTP response creatied with a Lua script using print function.
 file on server using embedded Lua code (code is put inside <?lua ?> tags).

First we have to configure Apache httpd.conf :

AddHandler strix-luapage-handler .hlua
AddHandler strix-lua-handler .lua

Explanations:
The strix-luapage-handler handler associate files with a .hlua extension with the
embedded Lua code execution.
The strix-lua-handler handler associate .lua extension with the script generation.
You could change the extensions as needed. These association are only available
into the specified Directory (here /scripts).

To test, just copy the folder tests/scripts from the StrixDB distribution into your
DocumentRoot folder specified in httpd.conf.

Embedded Lua code

Lua code must be included inside <?lua ?> . See test.hlua for an example. The
MIME type of the file is set by the Lua function apache.setContent

apache.setContent('text/html')

In the sample testCreatedRdf.hlua, the content type is set to
application/rdf+xml; charset=utf-8 so that the browser will interpret the response
as RDF/XML.

Script generated responses

In this case, all the file is generated by the Lua script. The sample test.lua shows
how to generate an HTML file. The sample testCreateRdf.lua shows how to
generate a RDF/turtle file.

As for embedded code, the Lua function apache.setContent set the MIME type of
the response.

More information in relevant documentation

