StrixStore

A RDF store allowing transactions and DATALOG rule inference

Copyright © 2010 StrixDB. Freely available under the terms of the StrixDB license.

Content

Overview

Status and license

History

Download and Install

How to Use
with SPAROL protocol
with Lua scripts
as areqular DLL

Transactions and Concurrency

Lua Binding Reference
Graph management
Rules management
Namespace management

Overview

StrixStore his a disk-based RDF graph database implementing the SPARQOL and
SPAROQL /Update standard. It support transactions with the one writer-multiple
readers paradigm. StrixStore integrates Datalog rules inference with the
SPARQL query language.

StrixStore could be used as a SPARQL and SPARQL/Update server used with
Apache HTTP server (an Apache httpd module is provided). It could also be used
as a embedded RDF database if launched from Lua (Lua 5.1 module interface is

provided) or launched as a standard Windows DLL from a C/C++/Java (C DLL
interface is also provided).

This document focuses on the StrixStore specificities (Lua bindings) and on its
different interfaces. It is not intended to be a SPARQL or SPARQL/Update tutorial.

Status and License

Current version of StrixStore is 0.92

The current version is a beta release and could be used free of charges for any
purpose. The current version is ruled by the terms of the StrixDB license for beta
releases.

History

e 14-07-2010 Initial release v 0.9

e 02-09-2010 release 0.91: improved XML/RDF and RFC 2396 compliance

e 06-11-2010 release 0.92: could be used with APACHE http server.
StrixServer no more maintained.

Download and installation

StrixStore can be downloaded as Windows binaries from
http://www.strixDB.com/download.html. Just unzip the distribution zip file into
a folder. The standard distribution includes :

e StrixStore.dll

e luab.1.dll a Windows static linked version of Lua

o webGet.dll a Lua 5.1 module needed to download http files from
Internet (LOAD command of SPARQL/Update).

e lua.exe a Lua console.

e« mod_strixdb a httpd Apache module,

o StrixStore.h the DLL API of StrixStore for using it as a standard
Windows DLL.

e spargl.html a simple html form to test SPARQL queries.

StrixStore doesn’t require extra modules or dependencies and need only
LUAS.1.dll (DLL provided with the distribution or available at LuaBinaries) and
the Lua module webGet (needed for the LOAD command of SPARQL/Update).

Installation depends of the use of the DLL (see chapter How to Use). Using from

Lua is the simplest way to use StrixStore : just use it as a Lua module as
bellow....

C:\StrixDB\release>lua.exe

Lua 5.1.4 Copyright (C) 1994-2008 Lua.org, PUC-Rio
> require("StrixStore®)

>

How to use
StrixStore provides 3 different API :

e httpd (Apache Web Server) module API to deploy a Web server with the
SPARQL and SPARQL/Update protocol.

e aluaAPI: StrixStore could be loaded in Lua with require('StrixStore') The
Lua functions are described in the Lua Binding Reference chapter.

o C exported function to use it as a regular DLL from a C/C++/Java program.

StrixStore.dll
exe Q—[lua.5.1.dll }\' luaopen_StrixStore -—f’.[]

using with Luab.1

CiC++ API g
e : -
exe StrixStore. h J% StrixStore.dll

using as standard DLL

~ L—> Apache httpd |——— mod strixdb.so .
@sp K X»[Stmcs.tu::.re.cm]

HTML

using with Apache

Notes:

e Using StrixDB with Apache Server explain how to deploy StrixDB with
Apache HTTP Server.

o Compatibility of ISAPI with Microsoft 1IS is not well tested and is
unsupported

Using with SPARQL protocol

Copy the file mod_strixdb.so of StrixDB distribution into the modules folder of
Apache Server (with standard installation, this folder is C:\Program Files\Apache
Software Foundation\Apache2.2\modules)

Modify the httpd.conf configuration file of Apache as below:

LoadModule strixdb_module modules/mod_strixdb.so

StrixRoot *"C:/Program Files/StrixDB/"
StrixFilename "D:/RDF/strix.db™
StrixDefaultURl http://mydefault/graph/uri/*

<Location /strixdb>
SetHandler strix-db-handler
</Location>

Explanations : LoadModule says to Apache that we want to use StrixDB,
StrixRoot refers to StrixDB installation folder, StrixFilename is the file used by
our RDF store, StrixDefaultURI is the default graph URI.

Using with Lua scripts
The use of StrixStore from a Lua script could be made from :

e anormal Lua script having loaded StrixStore with require('StrixStrore’)

e a Dynamic Lua page (each file in a script enabled folder. see StrixServer).
Dynamic pages are *.lua files or any file (Lua is executed inside the tags
<?lua ... ?> similar to the php tags <?php ... ?>).

e aregular DLL linked with StrixStore (see below) through the function
StrixDB_exec.

Using as regular DLL

You could also use StrixStore as an embedded RDF store from a C/C++/Java
program. The API is available in the StrixStore.h file. The exported functions are :

o StrixDB_open takes a string describing the parameters to open the RDF
store in Lua. Returns NULL if ok or error message.

StrixDB__close close the RDF store.

StrixDB_lua_State returns the lua_State* for the calling thread.
StrixDB_exec executes the given string as Lua script
StrixDB_sparqgl takes a SPARQL query (a string) and returns rows of
values (the SELECTed variables)

o StrixDB_update executes a SPARQL/Update command.

test embed.cpp illustrates use of these functions.

Transactions and concurrency

All request to the storage are made inside a transaction. If the request failed (for
example with a syntax failure in a graph creation or graph update), a rollback is
made.

StrixDB follow the 1 writer, multiple reader paradigm. Most of the requests need
only to read the RDF store : They are made with read rights. Multiple-read
transactions could occur together. But only one write transaction is allowed. For
this reason, write transactions (transactions modifying the database) could occurs
at a given time : write transactions are exclusives.

About concurrency: In all the API (C API, Apache module or Lua module), each
call to StrixDB is made inside the thread context. A call could is blocked if : (1)
need of a write access and some other transactions are not finished, (2) need of a
read access and a write transaction is not finished.

All the API are thread safe.

Lua Binding Reference

All the functions loaded with require('StrixStore') are in a table named rdf.

rdf.help()

Print a help summary of all available functions.

rdf.open {<params>}

Take as argument a table specifying RDF store parameters. These parameters
are :

file=<string> the database file on disk REQUIRED
L the URI of default graph (as specified
uri=<string> by SPARQL) REQUIRED

the Lua script to execute at each start
of StrixStore

if true, the database is deleted just
before each start.

Advanced parameters

initFile=<string>

truncate=<boolean> default= false

the number of pages cached in the
poolSize. Each page has 4K. Big
poolSize improves speed but
consumes memory.
initindex=<integer> Size of the inital index (bitmap). default=8*1024*1024

Size of the new allocated quantum
(bitmap) when the allocated file is full.
safe=<boolean> default=false
noBuffer=<boolean> default=false
if true, wait disk write acknowledge
event for each write transaction (safer

but slower with SPARQL/Update
transactions).

poolSize=<integer> default=100*1024

guantum=<integer> default=512*1024*1024

writeThrough=<boolean> default=false

An Lua code snippet using rdf.open. This snippet is useful for a script that could
be used both from a Lua script (not loading by default StrixStore and opening
database) or from a Lua dynamic page.

require("StrixStoreT)
ifT rdf.isOpen()==Ffalse then
rdf.open{file="rdfStore.db" ,uri="http://myURIroot/"}

end

rdf.close()

Without comment.. close the RDF store.

<boolean> = rdf.isOpen()

Returns true if RDF store is open, else returns false.

rdf.stats()

Returns informations about memory usage.

rdf.sparqgl(<query> [,<option>])

Takes as first argument a SPARQL query (a Lua string). Without second
argument, returns a Lua iterator. Example:

local query = [[PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?r ?name

FROM <test/friends/>

WHERE { ?r foaf:name ?name}]]

for resource,name in rdf.spargl(query) do
print(resource, name)
end

The variables used in the SELECT of the SPARQL query are bounded to the
iterator variable by they order of declaration (and without regard of their name).

Three options could be used for this function:

e 'print’ print the SPARQL variables (no iterator is returned).
« 'table’ returns a table of rows. Each row is a table of variables with the

SPAQL query results.
e ‘'explain’ print the SPARQL virtual machine bytecode (no iterator is

returned).

rdf.update(<query> [,<option>])

Submit the SPARQL/Update query (a Lua string).
The only possible option is 'explain’. With explicit add/retract in query, nothing is to

explain. Only the use of WHERE could need a bytecode compilation and produces
some results with ‘explain’ option.

rdf.pragmal)

TODO

rdf.pragma(<var>,<boolean>)

TODO

rdf.help ()

Without comment (print help).

rdf.path(<opt>)
returns useful path location.
e <opt>='db' returns the path of the RDFstore file
e <opt>='loader returns the path of the loading application
e <opt> ='StrixStore' returns the path of the installation file of StrixStore.dll

Examples:

print(rdf.path("loader®))
C:/Program Files/Apache Software Foundation/Apache2.2/bin/

...means that the loader was in the Apache httpd folder.

For Dynamic Lua pages (used with Apache Server), see also the apache.root()
function.

Graph management functions

rdf.graph.import { uri=<URI>, file=<URL> [format="xml'|'turtle’] }

If the URL of the file is not local, download the file from internet automatically
using HTTP GET and default MS Internet Explorer settings for proxy).

Format is nor required (use of the file extension to decide the format).
e *.rdf and *.xml are associated with XML format

o *ttlis associated with TURTLE format
e *.ntis associated with N-TRIPLES format.

rdf.graph.create (<URI> , <datas>)
Create a graph of the given <URI> (or replace if already present) and put the

datas inside.
The datas MUST have the TURTLE format.

rdf.graph.delete (<URI>)

Remove the graph of given URI from the RDF store.

rdf.graph.export { uri=<URI> [,file=<PATH>] [,format="XML'|'turtle'|'triples’']
[,compact=0|1]|2] }

Export the graph of given URI.
If no file is specified, this function use Lua print function. This means :

o standard output if used from a Lua console
e HTTP response if used inside a Lua scripting page (see Using StrixDB
with Apache HTTP Server).

If no format is provided, it use the file extension to decide the format (see
rdf.graph.import).

If compact=1, export will use the current namespaces (rdf, rdfs, owl, foaf, xsd).

If compact=2, export will create all the namespaces for making the output smaller
(but the 2 pass process take more time).

rdf.graph.print ()

print the graph meta datas of all graph stored in the RDFstore. Example :

> rdf.graph.list()

0 | 2010-11-23T00:36:54Z | http://MyStore/

374 | 2010-11-23T00:36:54Z | http://MyStore/modeles/
(E:/SOMEGRAPH/RDF/modeles-tome4 ._ttl)

28 | 2010-11-23T00:36:54Z | http://MyStore/schema/
(E: /SOMEGRAPH/RDF/SOMEGRAPH-schema. ttl)

Meta datas are the number of triples, the time stamp (unix time of last graph
update or modification), the URI of the graph (this is not the URL... URL is the
RDF command to get the graph), the source of the file.

rdf.graph.list ()

returns a Lua table of graph meta datas. The provided datas are the same as for
the rdf.graph.print command. Example :

> table.foreach(rdf.graph.list(),
function(k,v) print(~graph=",k) table.foreach(v, print) print() end
)

graph= http://MyStore/

source

tripleCount O

blankCount 0O

DEFAULT_GRAPH true

uri http://MyStore/

timeStamp 2010-11-23T00:36:54Z

graph= http://MyStore/modeles/

source E:/SOMEGRAPH/RDF/modeles-tome4.ttl
tripleCount 374

blankCount 48

uri http://MyStore/modeles/

timeStamp 2010-11-23T00:36:54Z

graph= http://MyStore/schema/

source E:/SOMEGRAPH/RDF/SOMEGRAPH-schema.ttl
tripleCount 28

blankCount O

uri http://MyStore/schema/

timeStamp 2010-11-23T00:36:54Z

rdf.graph.rename(<URI>, <URI>)

Rename the graph of first <URI> with the second <URI>. Destination <URI> must
not be an existing graph.

rdf.graph.copy(<URI>, <URI>)

Copy the graph of first <URI> into the second <URI>. Destination <URI> must not
be an existing graph.

rdf.graph.clear (<URI>)

Remove all triples from graph of given <URI>.

<boolean> = rdf.graph.exists(<URI>)

returns true if the graph of given <URI> exists.

rdf.graph.triples (<URI>)

print the triples od graph of given <URI>. Has the same result that
rdf.graph.export { uri=<URI>,format="triples'}

<boolean> = rdf.graph.equal(<URI1> , <URI2>)
return true if the graph of first <URI> is equivalent to the graph if second <URI>.

Equivalence is calculated with a graph homomorphism algorithm for all triples
using blank nodes.

Avoid using it with graphs having thousand of blank nodes (could take a lot of
time).

rdf.graph.relocate(<URI1>, <URI2> , <URI3>)

This function update the graph of the furst <URI1>.
All resource of the graph that are child of <URI2> will be relocated to <URI3>.

Exemple: rdf.graph.relocate(..., 'http://bad/person’, 'http://good/people’) will
change the triplets

http://bad/person/Neron rdfs:label "Emperor Neron®

into

http://good/people/Neron rdfs:label "Emperor Neron™

rdf.graph.update { [{ 'add’|'retract’, <URI>, <turtleDatas>}]}

This function is provided to update multiple graphs inside a same transaction (to
avoid semantic inconsistence between graphs if an error occurs).

This function was created before implementation of SPARQL/Update. Use
SPARQL/Update is better recommended (even if more complex syntax).

TO DO EXAMPLE

rdf.graph.add {<args>}

This function was created before implementation of SPARQL/Update. Use
SPARQL/Update is better recommended (even if more complex syntax).

TO DO EXAMPLE

rdf.graph.retract {<args>}

This function was created before implementation of SPARQL/Update. Use
SPARQL/Update is better recommended (even if more complex syntax).

TO DO EXAMPLE

Rules management functions

rdf.rules.import {<args>}

TO DO

rdf.rules.create {<args>}

TO DO

rdf.rules.export {<args>}

TO DO

rdf.rules.list ()

TO DO

rdf.rules.print ()

TO DOp>

NaNamespace management functions

<string> = rdf.nspace.prefix (<uri>)

TO DO

rdf.nspace.set (<uri>,<prefix>)

TO DO

rdf.nspace.list ()

TO DOp>

